i4Q

Industrial Data Services for Quality Control in Smart Manufacturing

Show project description Hide project description

i4Q will provide a complete solution consisting of sustainable IoT-based Reliable Industrial Data Services (RIDS) able to manage the huge amount of industrial data coming from cost-effective, smart, and small size interconnected factory devices for supporting manufacturing online monitoring and control. The i4Q Framework will guarantee data reliability with functions grouped into five basic capabilities around the data cycle: sensing, communication, computing infrastructure, storage, and analysis and optimisation; based on a microservice-oriented architecture for the end users. With i4Q RIDS, factories will be able to handle large amounts of data, achieving adequate levels of data accuracy, precision and traceability, using it for analysis and prediction as well as to optimise the process quality and product quality in manufacturing, leading to an integrated approach to zerodefect manufacturing.

i4Q Solutions will efficiently collect the raw industrial data using cost-effective instruments and state-of-the-art communication protocols, guaranteeing data accuracy and precision, reliable traceability and time stamped data integrity through distributed ledger technology. i4Q Project will provide simulation and optimisation tools for manufacturing line continuous process qualification, quality diagnosis, reconfiguration and certification for ensuring high manufacturing efficiency and optimal manufacturing quality.

BIBA focuses on: 1) the creation of data quality guidelines for manufacturing and 2) the extension of its software QualiExplore to support a) production data quality knowledge, and b) production line certification under the aspect of data quality. The extension of QualiExplore includes the integration of a digital assistant (conversational AI).

Duration 01.01.2021 - 31.12.2023, Funded by H2020

Contact person

Projektlogo COgnitive Assisted agile manufacturing for a LAbor force  unterstützt durch vertrauenswürdige künstliche Intelligenz

COALA

COgnitive Assisted agile manufacturing for a LAbor force supported by trustworthy Artificial Intelligence

Show project description Hide project description

Humans are at the center of knowledge-intensive manufacturing processes. They must be skilled and flexible to meet the requirements of their work environment. The training of new workers in these processes is time consuming and costly for companies. Many industries suffer from the shortage of skilled workers caused, e.g. by the demographic change. A second challenge for the manufacturing sector is the continuous competition through high quality products. COALA will address both challenges through the innovative design and development of a voice-first Digital Intelligent Assistant for the manufacturing sector. The COALA solution will base on the privacy-focused open assistant Mycroft. It integrates prescriptive quality analytics, AI system to support on-the-job training of new workers, and a novel explanation engine - the WHY engine. COALA will address AI ethics during design, deployment, and use of the new solution. Critical components for the adoption of the solution are a new didactic concept to reach workers about opportunities, challenges, and risks in human-AI collaboration, and a concurrent change management process. Three use cases (textile, white goods, liquid packaging) will evaluate the results in common manufacturing processes with significant economic relevance. We expect to reduce the failure cost in manufacturing by 30-60% with the prescriptive quality analytics feature and the assisted worker training. For the change over time we expect a reduction of 15% to 30% by shortening the worker training time.

Duration 01.10.2020 - 30.09.2023, Funded by H2020

Contact person

PeneloPe

Closed-loop digital pipeline for a flexible and modular manufacturing of large components

Show project description Hide project description

folgt...

Duration 01.10.2020 - 30.09.2024, Funded by H2020

Contact person


Project website

ASSURED

Future Proofing of ICT Trust Chains: Sustainable Operational Assurance and Verification Remote Guards for Systems-of-Systems Security and Privacy

Show project description Hide project description

ASSURED’s vision is to introduce a ground-breaking policy-driven, formally verified, runtime assurance framework in the complex CPS domain. As the demand for increasingly autonomous CPSs grows, so does the need for certification mechanisms to ensure their safety. Current methods towards software and system validation requires exhaustive offline testing of every possible state scenario PRIOR to fielding the system. In this context, novel assurance services ensure that the control output of such controllers does not put the system or people interacting with it in danger, especially in safetycritical applications as the ones envisaged in the ASSURED Demonstrators. ASSURED leverages and enhances runtime property-based attestation and verification techniques to allow intelligent (unverified) controllers to perform within a predetermined envelope of acceptable behaviour, and a risk management approach to extend this to a larger SoS. ASSURED elaborates over the coordination of deployed TEE agents in horizontal scope, encompassing numerous technologies applicable to everything from edge devices to gateways in the cloud. Such technologies DICE for binding devices to firmware/software, trusted execution environments, formal modelling of protocols and software processes, software attestation, blockchain technology for distributed verification of transactions between system elements and controlflow attestation techniques for enhancing the operational correctness of such devices. In this frame, we consider the mutual verification of system components in distributed multi-operator environments. Our approach ensures a smooth transition and advancement beyond current strategies where security management services are considered in an isolated manner relying on traditional perimeter security and forensics in a “catch-and-patch” fashion without dwelling on the safety of the overall network as a whole, to holistic network security services capable of minimizing attack surfaces.

Duration 01.09.2020 - 31.08.2023, Funded by H2020

Contact person

PrintAI

Selbstlernende Softwareplattform für 3D-Druckerfarmen zur individualisierten Serienherstellung am Beispiel von Schuhen

Show project description Hide project description

Duration 01.07.2020 - 31.12.2022, Funded by BAB

Contact person

Events:
Die inspirierende Mittagspause
30. Juni 2020, Online
Plattform-Geschäftsmodelle
10. Juli 2020, Online
Toolkitchen
28. August 2020, 13 - 17 Uhr, BIBA oder online
Technologien der Logistik
15. September & 17. November 2020, BIBA
SysInt 2020
November 11th - 13th, 2020, Bremen

More events