Projektlogo Multimodales, KI-gestütztes Informationssystem zur kognitiven Unterstützung logistischer Prozesse

AI-Consult

Multimodal, AI-supported cognitive information support system for in logistics processes

Show project description Hide project description

Duration 01.04.2022 - 31.03.2024, Funded by BMWK

Contact person

AKAMAI ASRS

New Intralogistics warehouse system

Show project description Hide project description

AKAMAI team develop a novel Automated Storage and Retrieval System (ASRS) solution, managing non-standard loads efficiently in compact warehouses. This EIT project focuses on an innovative system of vertical displacement (specific elevator) combined with proprietary Autonomous Mobile Robots (AMR) to provide higher density than existing industrial solutions.

Duration 01.01.2022 - 31.12.2022, Funded by EU - EIT Manufacturing

Contact persons

Projektlogo Intelligente Arbeitsergonomie mittels sensorischer Exoskelette und autonomen Transportsystemen für die erweiterte Mensch-Technik-Interaktion im Automobilumschlag
Project website

MEXOT

Intelligent work ergonomics using sensory exoskeletons and autonomous transport systems for enhanced human-technology interaction in automotive cargo handling

Show project description Hide project description

The cargo handling environment in ports is characterized by the handling of heavy and large loads, in which humans are essential despite the progress of automation. In the specific application of automobile handling, the vehicles are prepared for the respective target market in technical centers. For this purpose, tires and trailer couplings, for example, have to be moved and mounted by humans. In addition, there is a large number of additional car parts that have to be picked and, in some cases, assembled in an overhead position. As a result, a high physical strain is placed on the employees, which leads with increasing age to a degree of physical impairment. Within the scope of the project MEXOT, the challenges identified are addressed with a socio-technical development approach. To this end, the use of exoskeletons is targeted, aiming to research on intelligent work ergonomics, which examines human-machine interaction in combination with exoskeletons and automated guided vehicles (AGVs). Motion sensors will be integrated into a passive exoskeleton to track the movement patterns of the employees. First, this information is used to enrich data for an external incentive system that rewards employees for wearing the exoskeleton correctly and integrates gamification approaches to increase motivation. In a second step, the data and process information are used to activate or deactivate individual "elastomeric muscles", aiming at a higher wearing flexibility for activities that do not require physical support. In the third step, the movement information of the exoskeleton will be used to develop a sophisticated pick- and assembly-by-motion concept, which, in combination with the camera system of the AGV, enables the registration of individual work steps in picking and assembly. For the AGV, further research is conducted on increasing productivity and reducing the workload of employees through process-specific and worker-individualized material supply. Moreover, voice- and gesture-based functionalities are implemented for human-machine interaction with the AGV.

Duration 01.01.2022 - 31.12.2024, Funded by BMDV
Download PDF-Flyer

Contact persons

Projektlogo ROS-based Education of Advanced Motion Planning and Control

RIEMANN

ROS-based Education of Advanced Motion Planning and Control

Show project description Hide project description

This project aims at reducing technological barriers towards using a fleet of robots in warehouses and conventional manufacturing environments. This project creates learning material to upskill university students and professionals in advanced autonomous navigation concepts, specifically how to leverage existing open-source software libraries on mobile robot platforms. From end-user perspective, our education materials will help industries using mobile robot solutions to perform complex debugging/maintenance without overly relying on their third-party supplier. This will save time spent tuning motion planning libraries without being fully aware of the effect of underlying hyperparameters.

Duration 01.01.2022 - 31.12.2022, Funded by EU - EIT Manufacturing
Download PDF-Flyer

Contact person

Projektlogo Automatisches Ladesystem für palettierte Ladungen für unmodifizierte europäische Auflieger

PaLA

Palletized Loads Automatic Loading System for unmodified European Trailers to enable a Resilient Supply Chain

Show project description Hide project description

The manufacturing facilities in Europe are mostly fully automated with minimum touch on pallets from production all the way up to the docks but the last mile of action, i.e. loading operation remains fully manual with no flexibility to decide on how to execute this task (automated or manual). This makes it a weak link in the supply chain, which is prone to disruption (especially as learnt in COVID pandemic situation) as it is fully dependent on human presence to execute a labor intensive and less ergonomic task. Hence true supply chain resilience cannot be achieved until there is a solution developed to automatically load palletized goods with on the road (un-modified) European trailers.

The main reason why this task is still conducted manually is the non-standard trailer fleet in Europe and the lack of no automatic solution available for curtain trailers. Given that curtain trailers comprise at least 80% of on the road trailers there is a huge opportunity with high scalability for a solution.

However, currently existing solutions for automatic loading of pallets only work for loading rigid-walled trucks, which are characterized by rigid, nondeformed walls. In contrast, for loading of curtain trailers, such systems fail due to the varying conditions of curtain trailers and less defined walls resulting in these systems to crash into obstacles like carrier beams causing damaged loads or resulting in emergency stops. Consequently, this activity aims to enable an existing automatic loading solution (Nalon) of the company Duro Felguera to tackle the challenges associated with automatically loading curtain trailers from the rear side.

Duration 01.01.2022 - 31.12.2022, Funded by EU - EIT Manufacturing
Download PDF-Flyer

Contact persons

Events:
SysInt 2022
September 7 - 9, 2022, Genova
18. Fachkolloquium Logistik
26. - 27. September 2022, Bremen
IFIP-ICEC 2022
November 1 - 3, 2022, BIBA

More events