Motivation
Due to online trading, consumer logistics is becoming increasingly important, especially in the so-called «last mile» area. Food logistics is particularly challenging in this context, as these transports are often time-critical and require special transport packaging for chilled or frozen products as well as additional packaging for customer-specific order picking. These characteristics result in a consumer dilemma, where the convenience of online ordering, including delivery, is offset by the CO2 emissions and packaging waste this generates. To date, however, there is no way of showing consumers the direct and indirect effects of their actions at the moment of ordering, so that a conscious choice of sustainable options is not yet possible today.

Objective
The cooperation project aims to develop a methodology for the customer-specific design and evaluation of sustainable consumer logistics. This will enable quantitative results to be determined concerning CO2 footprint, packaging, plastic content, delivery time, delivery date, delivery/storage location and shipping costs of different logistics options. Based on these key figures and their immediate changes when varying the logistics options, consumers will for the first time be shown the consequences of their online ordering behaviour and will be given the opportunity to reflect on their behaviour as well as to choose sustainable alternatives consciously.

Approach
The methodology to be developed is a combination of social science discrete choice experiments and engineering logistics simulations. In a cycle, questionnaires on logistics preferences will be created within the framework of discrete choice experiments. Answering these questionnaires will generate individual logistics options, which will then be evaluated by computer simulations of urban infrastructure. The results obtained in this way are fed back into the survey so that the respondents have the opportunity to reflect on their behaviour and make appropriate decisions, which are then re-evaluated in a simulation.